

I Semester M.C.A.(2 Years Course) Degree Examination, August/September 2021 (CBCS Scheme) (2020 – 2021 and Onwards) COMPUTER SCIENCE

1MCA3: Computer Organization and Architecture

Time: 3 Hours

Max. Marks: 70

Instruction: Answer any five from Section - A and any four from

Section – B.

Make a stop clock perculas substitution only a of the accustoned

SECTION - A

Answer any five of the following. Each question carries six marks:

 $(5 \times 6 = 30)$

1. Convert the following:

- 2. Construct the basic logic gates using NOR logic gate.
- 3. Differentiate CISC and RISC.
- 4. Explain different instruction formats with an example for each.
- 5. Explain the limitation of Instruction level parallelism.
- DMA has Priority over the CPU when both request a memory transfer. Justify your answer.
- Explain the characteristics of multiprocessors.
- 8. Explain different types of ROM.

SECTION = B Common Section = B C

Answer any four of the following. Each question carries 10 marks. (4x10-4x	<i>)</i>
그는 그리고 하는 것이 그리고 하는 그리고 있는 것이 되는 것이 얼마나 되었다. 그리고 하는 사람들이 얼마나 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이다.	5
$Y = \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}\overline{D} + AB\overline{C}D + A\overline{B}\overline{C}D + \overline{A}\overline{B}C\overline{D}$	
 b) Design a combination logic circuit that form the arithmetic sum of three input bits. 	5
 a) Construct a 4-to-1 line multiplexer using logic gates. Explain its working procedure. 	5
b) Implement the following Boolean function using 8: 1 multiplexer.	5
$F(A, B, C, D) = \sum m(1, 3, 5, 6)$	
11. Discuss any two addressing modes of any generic microprocessor with an example for each.	10
12. Explain distributed memory MIMD architecture with neat diagram.	10
13. Explain three state – buffer with all supporting diagrams.	10
14. What is multithreading with respect to any generic microprocessor / OS ? Discuss multithreaded processor architecture in detail with neat diagram.	10
그는 그	