

I Semester M.C.A. (2 Years Course) Examination, August/September 2021 (CBCS) (2020 - 2021 and Onwards)

atail ent rente COMPUTER SCIENCE no que en la computer de la computer science en computer en computer science en computer en computer

1MCA4: Theory of Computation and dod die A

Time: 3 Hours

(4x10=40)

2

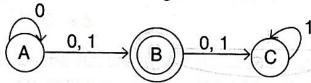
Ö.

100

8

100

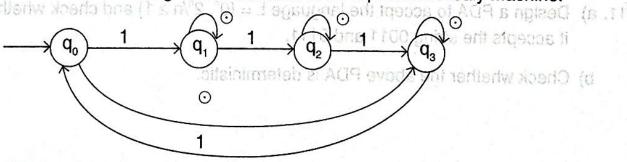
Max. Marks: 70


Instruction : Part - A : Answer any five questions.

Part - B: Answer any four questions.

PART - A . Short and four foil questions any four A

Answer any five full questions. Doe als to agree 195008 of ARR a ngreed (5×6=30)


- and ending with atleast two h's. 1. Define DFA, NFA and E-NFA with examples. b) Minimize the following DEA,
- 2. Convert the following NFA to DFA.

- 3. State and prove pumping lemma for regular languages and show that $L = \{ww/w \text{ belongs to } \{a, b\}^*\}.$
- 4. Write the left most and right most derivation for the following production and check whether it is ambiguous.

10. a) Construct an E-NFA for the regular expression 0(0 + 1) by

- b) Prove that context five languages are closed under union, concatenation 5. Explain with examples Chomsky hierarchy of languages.
- 6. Convert the following Moore Machine to an equivalent Mealy Machine.

Given
$$\lambda (q_0) = a$$
, $\lambda (q_1) = b$
 $\lambda (q_2) = c$, $\lambda (q_3) = d$.

Jista bas

- 7. Explain Turing Machine and instantaneous description of Turing machine.
- B. Define post correspondence problem. Check whether the lists A = {b, bab³, ba} and B = {b³, ba, ba} have a PCP solution.

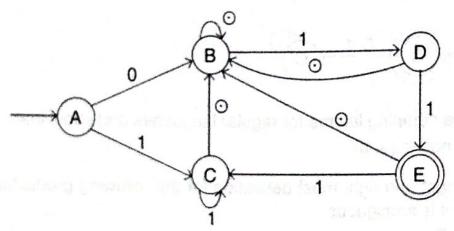
PART - B

Answer any four full questions.

 $(4 \times 10 = 40)$

4

6


5

5

8

2

- a) Design a DFA to accept strings of a's and b's starting with atleast two a's and ending with atleast two b's.
 - b) Minimize the following DFA.

- 10. a) Construct an E-NFA for the regular expression 0(0 + 1)* 01.
 - b) Prove that context five languages are closed under union, concatenation and star.
- 11. a) Design a PDA to accept the language L = {0ⁿ, 2ⁿ/n ≥ 1} and check whether it accepts the string 0011 and 0111.
 - b) Check whether the above PDA is deterministic.

, , , , , , , , ,		-3- PG — 85	53
12.	a)	Convert the following grammar into equivalent CNF. S → OA/IB	6
		$A \rightarrow OAA/IS/I$	
		$B \rightarrow IBB/OS/O$.	
	b)	Define GNF and write the steps to convert CFG to GNF.	4
13.	. a)	Write short notes on Rice theorem and Halting problem.	6
	b)	Obtain a PDA for the CFG given below.	4
		S → aABB/aAA	
		$A \rightarrow aBB/a$	
		$B \rightarrow bBB/A$	
		$C \rightarrow a$.	
14	. D	efine Recursive and Recursively enumerable languages and prove that the nion of two recursive languages is recursive.	10