

Reg. No.		100			
0		100		6.00	

I Semester M.C.A. Degree Examination, July - 2022 COMPUTER SCIENCE

Computer Organization and Architecture

(CBCS 20-21 Scheme)

Paper: 1MCA3

Time: 3 Hours

Maximum Marks: 70

Instruction to Candidates:

- 1) Answer any Five questions from Section A, each carries Six marks.
- Any Four questions from Section B, each carries Ten marks.

SECTION - A

- L. Answer any FIVE of the following questions. Each carries 6 marks. (5×6=30)
 - 1. Convert (FADE)16 into decimal, octal and binary number system.
 - 2. With a neat diagram explain Von-Neuman architecture.
 - 3. Subtract 73₍₁₀₎ from 28₍₁₀₎ using 2's complement method.
 - 4. Explain the different instruction formats.
 - 5. Write a note on RISC and CISC.
 - 6. Explain instruction level parallelism and its limitations.
 - 7. Explain the characteristics of multiprocessor.
 - 8. Explain virtual memory.

SECTION - B

Answer any Four Full questions.

 $(4 \times 10 = 40)$

- a) With a neat circuit diagram and truth table, explain the working of full adder.
- Simplify F(ABCD)=∑m(1,2,6,11,15)+∑d(0,3,9,10,14) using k map and write the circuit diagram for the simplified expression.

P.T.O.

10.	a)	Explain error detection using Hamming code.	(5)
	b)	Explain binary counter.	(5)
11.	a)	With a neat circuit diagram explain the working of JK flip flop.	(5)
	b)	Explain interrupt cycle with a neat flow chart.	(5)
		Paper : DMCA3	
12.	a)	Explain memory reference instruction and register reference instruc- with an example.	ction (5)
	b)	What is memory-mapped I/o and program controlled I/o.	(5)
13.	a)	Define addressing mode and explain any 4 addressing mode.	(5)
	b)	Explain the block diagram of DMA Controller.	(5)
14.	a)	Explain MIMD architecture.	(5)
			(5)
	b)	What is inter process communication? Explain shared memory metho- process communication.	d of (5)

and the state of t

ASSESSMENT OF THE PARTY OF THE

. Someony of the International Property and the International Control of t

DE-HISEV

the state of the s