

Reg. No.

I Semester MCA Degree Examination, July - 2022

COMPUTER SCIENCE

Theory of Computation (CBCS Y2k20 Scheme)

		Paper: 1MCA4	
	e:3 H		Marks: 70
Inst	ruction	ns to Candidates:	10
	1)	Answer any FIVE questions from Part - A.	
	2)	Answer any FOUR full questions from Part - B	HACK - 66
		PART-A	
	Answe	er any FIVE questions.	(5×6=30)
1.	Define	e DFA ad NFA. Explain differences between NFA ad DFA.	(6)
2.	What	is Regular expression? Prove that regular languages are closure under inte	ersection?(6)
3.	Define	e deterministic Push down Automata. Explain with example.	(6)
4.	Expla	in different types of Turing machines.	(6)
5.	Desig	n a DFA to accept binary strings divisible by 3, and verify '1010' string i ed.	(6)
6.	Expla	in chomsky's hierarchy of languages.	(6)
7.	Prove	that complement of recursively enumerable language in recursive.	(6)
8.	Elemi	inate unit productions from the grammer:	(6)
	$S \rightarrow A$	Aa/B/Ca	
	$B \rightarrow \epsilon$	aB/b	
.12	$C \rightarrow 1$	Db/D	
	$D \rightarrow 1$		
	$E \rightarrow a$	ab .	
			mro