

Reg. No.

I Semester M.C.A. Degree Examination, June/July- 2023

COMPUTER SCIENCE

Theery of Computation

(CBCS Y2k20 Scheme (2020-2021))

Paper: 1MCA4 July 9 strainforces on the C

Time: 3 Hours Maximum Marks: 70

Instructions to candidates:

- 1) Answer any Five full questions from Part A. Each question carries Six marks.
 - 2) Answer any Four full questions from Part B. Each question carries Ten marks.

PART-A

Answer any Five of the following. Each question carries Six Marks. (5×6=30)

- 1. Define Finite Automata. Compare DFA, NFA with suitable examples.
- Draw a DFA to accept strings of a's and b's ending with abb, and also show that strings bbabb, 2. aaabb are accepted by the DFA.
- 3. What is Regular expression? Construct FA for the Regular expression 00° + 1.
- 4. Define Derivation Tree and also show that following grammar is ambiguous S→aSbS/bSaS/€
- 5. Define PDA? Explain PDA model with graphical representation.
- 6. What are Moore and Mealy machines? Explain Difference between them.
- Define Turing Machine. Explain halting programming techniques for TM. 7.
- 8. State and prove that the Union of two recursive languages is recursive.

PART-B

Answer any Four full questions of the following. Each question carries Ten marks.

 $(4 \times 10 = 40)$

9. Convert the following NFA to equivalent DFA. a)

(7)

Discuss the Applications of Finite Automata.

(3)

P.T.O.

10.	a)	Define CNF. Convert the following CFG to CNF	
		$S \rightarrow 0 A 1 B$	
		$A \rightarrow 0$ $AA[1S]1$	(7)
		B → 1BB 0S 0	
	b)	Prove that the regular languages are closed under intersection.	(3)
11.	Define deterministic Pushdown Automata. Design PDA to accept the language		
	$L=\{WCW^R W \geq 0 \text{ and } W \text{ contains a's and b's} \}$ and also verify if it is DPDA or NPDA.(10)		
12.	Define instantaneous descriptions for Turing machines. Obtain a Turing machine to accept the language $L=\{0^n1^n2^n n\geq 1\}$. Show that the string $W=001122$ are accepted by TM.(2+6+2)		
13.	a)	Show that $L=\{0^n1^n n\geq 1\}$ is not regular.	(5)
	b)	Explain different types of TM.	(5)
14.	Write short note on:		
	a)	Universal languages	(5)
	b)	Contact Sancitiva Languages	(5)

Defined DAY Explain 21 to modern with grantfeeld representation