

III Semester M.C.A. Examination, April/May 2022 (CBCS Scheme) COMPUTER SCIENCE MCA 303 : Theory of Computation

Time: 3 Hours Max. Marks: 70

Instruction: Answer any five from Part – A and any four from Part – B.

PART - A

Answer any five of the following. Each question carries 6 marks. (5

 $(5 \times 6 = 30)$

- Define Regular Expressions. Design ∈ -NFA for regular expression (a+b)*a*b*c*.
- 2. Define Pumping Lemma for Regular languages.
- 3. Enumerate the limitations of a Deterministic Finite Automaton (DFA).
- 4. Define CFG. Show that $L = \{a^nb^nc^n, n \ge 1\}$ is not context free.
- 5. Show that the grammar $E \rightarrow E + T / T$, $T \rightarrow T \times F/F$, $F \rightarrow a$ is ambiguous.
- 6. Construct a PDA to accept $L = \{0^n1^n, n \ge 1\}$ and show the computation for input sequence w = 000111.
- 7. Define Turing Machine (TM). Explain the Turing Machine model and give any 2 of its variants.
- 8. Enumerate any five closure properties of Context free languages.

PART - B

Answer any four of the following. Each question carries 10 marks. (4×10=40)

- 9. Construct DFA to accept strings for $\Sigma = \{a, b\}$.
 - a) Strings not containing the substring aba
 - b) Strings with length divisible by 3.

PG - 304

- Design NFA to accept strings of 0's and 1's ending with 10 or 01. Convert the NFA to its equivalent DFA.
- 11. a) Given CFG G

 $S \rightarrow aB/bA$

A -a a /aS /bAA

 $B \rightarrow b/bS/aBB$

For the string bbaabbaa find LMD, RMD and Parse Tree.

b) Simplify the given CFG.

S → ABCa / bD

 $A \rightarrow BC/b$

 $B \rightarrow b/\epsilon$

 $C \rightarrow d/\epsilon$

 $D \to d. \\$

- 12. Define CNF. Convert to CNF where $P = \{S \rightarrow 0A/1B, A \rightarrow 0AA/1S/1, B \rightarrow 1BB/0S/0\}$.
- Construct a TM as a transducer to determine sum of 2 integers represented as zeroes and separated by a #.
- 14. Explain the following:
 - a) ID of a TM
 - b) Language accepted by a PDA
 - c) Halting problem of TM
 - d) Chomsky's Hierarchy.